

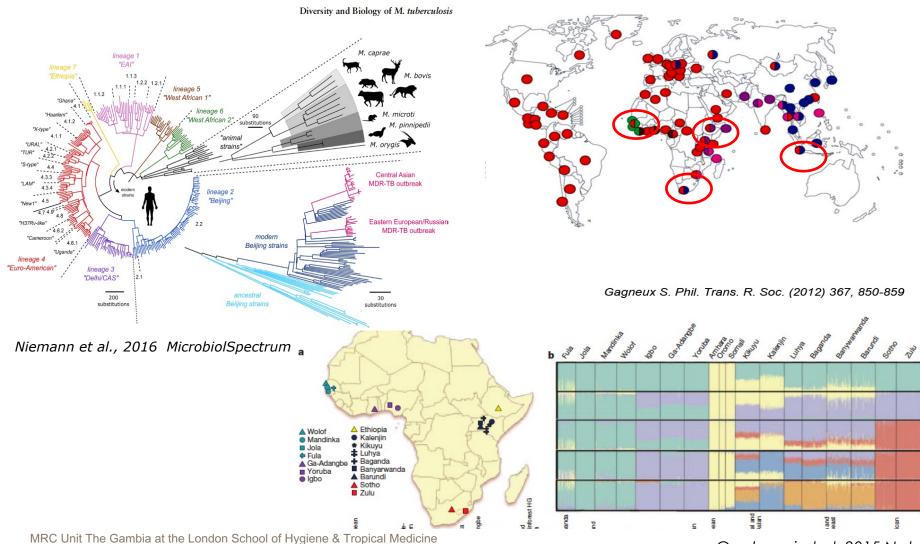
Mycobacterium tuberculosis strains diversity and new treatment approaches

Dr. Leopold D. Tientcheu, MSc PhD Assistant Professor

Vaccines & Immunity Theme

MRC Unit The Gambia at LSHTM

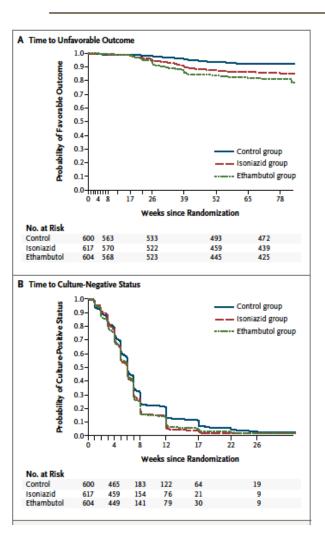
MRC Unit The Gambia at the London School of Hygiene & Tropical Medicine



Fogarty International Center Advancing Science for Global Health

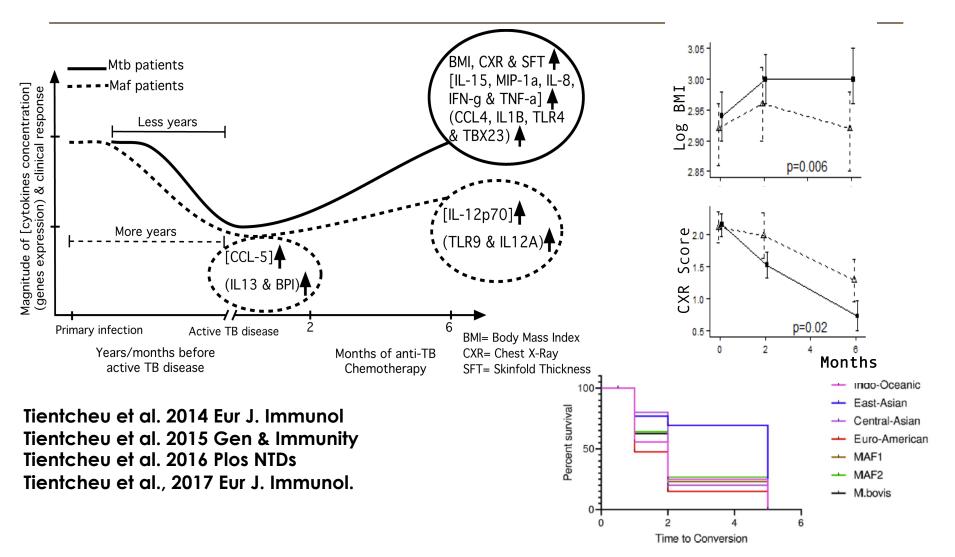
Phylogeography of MTBC Lineages and host genetic variation

Gurdasani et al. 2015 Nature


WHO recommended TB treatment regimen

- Treatment outcome of TB disease caused by different MTBC lineage:
 - Influence of *M. tuberculosis* Lineage Variability within a Clinical Trial for Pulmonary Tuberculosis. *Nahid et al.*, 2010 Plos One.
 - Association between *M. tuberculosis* lineage and time to sputum culture conversion. *Click et al.*, 2013 IJTLD.
 - Ethnic Variation in Inflammatory Profile in Tuberculosis. Coussens et al., 2013 Plos Path.

Possible impact of MTBC diversity on short anti-TB drugs regimen

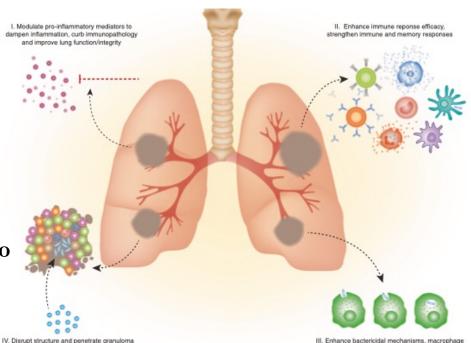

<u>Trial site</u>: South Africa, Kenya, Benin, Guinea, Senegal. *M. tuberculosis* lineage 2, 3, 4, 5 & 6

Subgroup	No. of Patients	Percentage with Unfavorable Outcome		Percentage-Point Difference, Experimental–Control (95% CI)	
		Experimental Group	Control Group		
Overall	1356	21.0	17.2	<mark>I ────</mark> ──	3.5 (-0.7 to 7.7)
Country					
Benin	232	23.6	22.9	⊢	0.6 (-10.2 to 11.5
Guinea	375	13.1	18.5		-5.4 (-12.8 to 2.0)
Kenya	166	22.0	19.0		2.9 (-9.4 to 15.2)
Senegal	268	23.8	11.6	·	12.3 (3.2 to 21.3)
South Africa	315	25.6	15.6	⊢−−−	9.9 (1.1 to 18.8)
HIV status					
Positive	238	27.0	31.7		-4.0 (-15.7 to 7.6)
Negative	1111	19.8	13.8	¦ ⊢_⊟ I	5.8 (1.3 to 10.2)
BMI					
<16	602	19.3	19.2	<u>⊢ 8</u>	-0.4 (-6.7 to 5.9)
≥16	754	22.4	15.6	<u>} − 8 − 1</u>	6.6 (0.1 to 12.2)
Cavitary disease					
Yes	692	22.8	15.1	► 	7.5 (1.7 to 13.3)
No	657	18.9	19.8	⊢ 8;1	-1.3 (-7.3 to 4.6)
			-		
				Experimental Better Control Better	

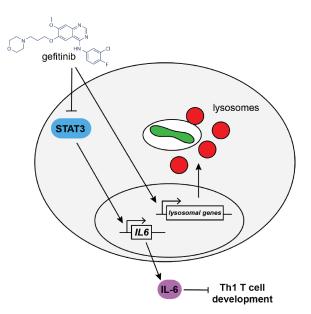
Figure 2. Unfavorable Outcomes in the Modified Intention-to-Treat Population, Overall and According to Subgroups.

Four-months **Gatifloxacin-containing regimen** for treating TB. **Merle et al., 2014 NEJM**

Differences between *Maf* and *Mtb*-infected patients responses following infection and treatment

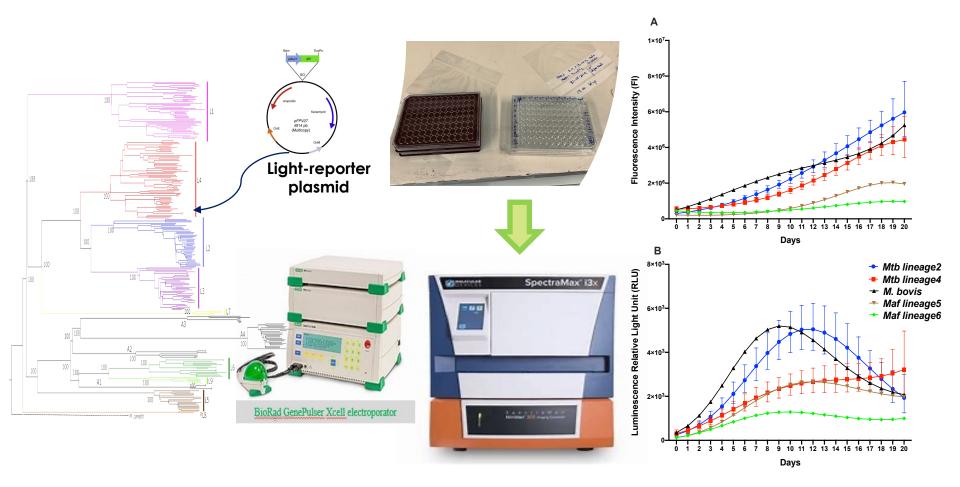


Diarra et al., 2018 PLosOne

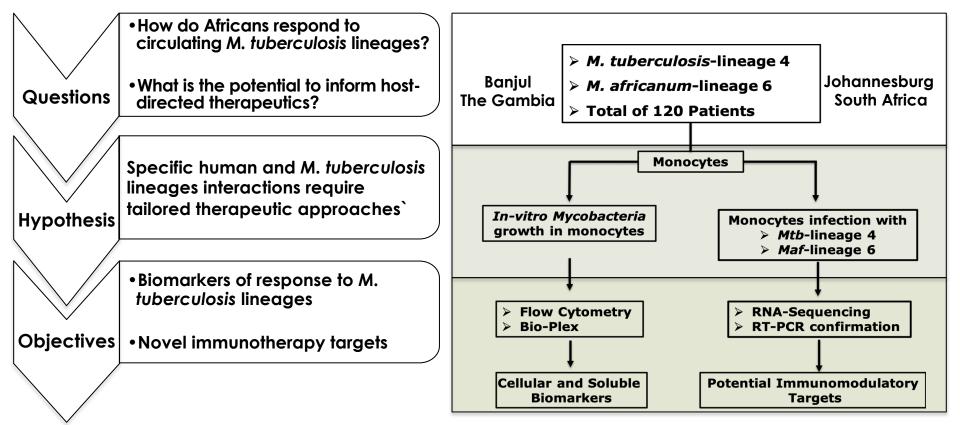

MRC Unit The Gambia at the London School of Hygiene & Tropical Medicine

Host-Directed Therapies (HDT) for TB

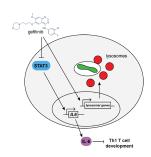
- HDTs are adjunctive therapeutic aiming to stimulate host killing of bacilli and reduce immunopathology
- Strategies include:
 - Repurposing drugs (Metformin, Auranofin)
 - Immunomodulator of inflammatory pathways (Gefitinib, Imatinib)



to expose Mit to anti-TB treatment


Mtb killing & reduce bacilli growth

M. tuberculosis complex (MTBC) lineages have different growth rate



Tuberculosis Host-Directed Therapy for Africa (TB-HDT4A)

Study Design

Conclusions

HDT drugs may have direct and indirect bacilli inhibition that varies with the HDT types and *Mycobacterium tuberculosis* complex lineages

Virtual Screening & Scoring

Re-ranking Virtual Screening results Compound selection & *in vitro* assays

2

3

There is a large human genetic variations across African regions that will affect response to HDTs against TB

Anti-TB drugs development should account for *Mycobacterium tuberculosis* complex lineages diversities

Acknowledgements

TB-HDT4A team

- Naffie Top (MSc Student)
- Ebrima Danso (Mphil student)
- Fatou Faal (PhD student)
- Sang Colley (Bioinformatician)
- Salem Mbekadji (Scientific officer)

MRC Unit The Gambia at the London School of Hygiene & Tropical Medicine

Training Dept

Prof Beate Kampmann

B Sequel